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N-sided Surface Generation from

Arbitrary Boundary Edges

Kiyotaka Kato

Abstract. This paper discusses a general theory and an implementation
method for generating a surface patch with concave edges, holes, ridges
and valleys in CAD/CAM applications. The surface generation method,
which has been proposed to create an N-sided patch with holes, is first
reviewed. Such surfaces are generally classified as transfinite surfaces, in
which a surface is interpolated to span given curves. In the proposed
method, each boundary edge defined in a 2-dimensional domain has an
appropriate blending function. The function is defined so that the deriva-
tives are 0 on the edges, and the function values are 1 on one edge and 0
on the other edges, and each edge in the 3-dimensional space is blended
smoothly. A revised method is also introduced in this paper. The pre-
viously proposed method has some problems in that a surface may not
be generated appropriately for concave edges, and the surface has to be
manipulated manually if it has holes. This causes distortion and overlap
in mapping from a 2D domain into 3D space. In the new method, the
blending function is revised, and the boundary edges in the 2D domain
are obtained from the edges in the 3D space beforehand. Thus, it is shown
that an N-sided patch with concave edges, holes, ridges and valleys can be
suitably generated.

§1. Overview

It seemed that the study of surface generation was almost complete after the
development of the NURBS (Non-Uniform Rational B-Spline) surface, and
many commercial CAD system used the NURBS surface as a unified surface
in their systems. However, it is now being recognized that the NURBS surface
has some limitations, and is not suitable for some actual cases. In one such
case, there is a problem with the generation of an n-sided surface patch. It is
rather hard to generate a surface patch for arbitrary topology with the NURBS
surface. Besides the development of 4-sided patches, n-sided surfaces have also
been studied. The methods developed can be classified into three classes: the
recursive subdivision method using polyhedrons, the multiple patch method in
which a surface is represented by plural 4-sided patches, and the single surface
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patch method in which a surface patch is represented as just one patch [1].
This paper refers to the single patch method.

A single patch method has been proposed which generates a surface patch
from an arbitrary shape and a number of edges together with holes [2]. It was
suggested that some relations are needed between the shape of the boundary
edges and the shape of the 2D-definition boundary. The method of surface
generation is a generalized one, but it was found that a surface cannot be
generated well in some cases. An illegal surface is generated when the bound-
ary has a concave shape and the surface has a hole. Distortion or overlap is
caused in mapping from a 2D definition space into the 3D space.

Sabin calls the method of surface generation from boundary edges a
"transfinite surface" in contrast with the one which is characterized by a
finite number of control points. He argued a general theory, and proposed a
two sided surface patch and a surface with holes [3-5]. The two sided surface
interpolates two given Bezier curves in a 2D definition space so that it forms
a smooth surface without singularity. He also tried to resolve this problem
from 3D into 2D by using a dynamic model with some constraints to generate
a surface patch with holes.

For this same purpose, this paper proposes a method of surface generation
which is flexibile in generating a surface from such boundary edges so as
not to cause twists and overlaps. The second section of this paper reviews
the theory about pre-proposed surface generation. In the third section, the
problems of the conventional method are discussed. After that, a new method
of resolving these problems is described. After showing some examples of
surface generation, the results are evaluated and conclusions are drawn.

§2. Surface Generation from Boundary Edges

2.1 General theory of surface generation

The fundamental idea is that a surface is created so that the interpolated
point of a surface is obtained using rational blending functions for positional
vectors and tangential vectors. Thus, the surface is a transfinite surface in
consideration of the boundary positions and cross-boundary derivatives on
the given boundary edges. It is a parametric surface created in mapping from
a definition domain to 3D space JR2 

-* ]R3 . Let us call the definition domain
Ql and the boundary of the domain F. Using points a E Q,,3 E F, B(O3) is a
positional vector and D(O3) is a cross boundary derivative of a given boundary
edge. These vectors specify the boundary conditions and have to be given as
follows. A surface is represented as in (2) using blending functions at a point
P:

B(O3) = lim S(a), D(/3) = lim OS(a)/&n, (1)

S(a) = j D(a)(B(3) + Ia -/31D(/3))). (2)
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Outer Boundary Inner Boundary
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Fig. 1. Definition of the outer and inner boundaries.

2.2 Implementation method

Here the actual implementation method of N-sided surface-patch generation
is described. Consider the normalized regular N-sided polygon in 2D space
shown in Fig. 1 so that the foot length from an arbitrary point to each side is
less than 1. This polygon is called "the outer boundary". Next, assume that
one or more regular N-sided polygons are located within the outer boundary
so that none of these polygons intersect with another. These polygons are
called "inner boundaries". The closed domain D is defined as the area inside
the outer boundary and outside the inner boundaries and is mapped to an N-
sided surface patch in 3D space. Next prepare a pair of a boundary parameter
and a distance parameter as follows.

(1) The distance parameter dij becomes 0 on side i, j, and varies from 0 to
1 according to the distance between point P and the side.

(2) The boundary parameter bij varies from 0 to 1 on side i,j of the given
point P, and bij is given as the ratio of the adjacent distance parameters
so that

bij= dij-1/(dij-1 + di~j+). (3)

Here i is the index of the outer boundary when i = 0, and the index of
an inner boundary when i 5 0. Here j is the index of a side of each
boundary.

The values of u and v determine an arbitrary point P(u, v) in the closed
domain D. The pair of a distance parameter dij and a boundary parameter
bij also determines the same point P. The blending function 41,m for a side
m of a boundary 1 is defined in the closed domain D as follows:

(1 -d2 .)/1d2-M .,Z , (4)-ýJ,m (u, V) = H Mp 4
•-••-•1-2 2Z:(1 - dp,q)/dpz,q

p=O q=1

Here the indices p and q relate to a side q of a boundary p. The boundary
is the outer boundary when p = 0. Here H is the number of holes, and Mp
is the number of sides of the boundary p. Also qL,m is a function of u, v
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Fig. 2. Distance parameter for the Fig. 3. Distance parameter and bound-
outer boundary. ary parameter for an inner boundary.

Fig. 4. Difference in surface generation according to definition domain.

and can also be a function of the pair of independent variables bij and dij,
because dl,m and bi,m are functions of bij and dij. As shown in Fig. 2, the
3D boundary condition for a side j of a boundary i is given by a positional
vector, Bj,m(bj,m) and a tangential vector, Di,m(bj,m), where each vector is

parameterized by the boundary parameter bl,m. By giving the values of u and
v, the variables bp,q and dp,q for side q of the boundary p are obtained, and
Bp,q(bp,q) and Dp,q(bp,q) can be determined. The N-sided patch is given by
the equation

H Mp

S(u, v) = 1 1 p,q(Bp,q(bp,q) + dp,qDp,q(bp,q)). (5)
p=O q=l

§3. Problems with Conventional Surfaces

The previously proposed method removes the restrictions of a 4-sided patch
[2]. This method enables a surface to be generated from the given boundary
conditions (position, tangent vector), and is able to represent holes on the
surface. However, it sometimes needs a manual transaction to generate a sur-
face. For example, a generated surface sometimes becomes twisted or illegal
when generating a surface with holes like the one shown in Fig. 4, although the
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(a) 2 sided patch (b)Transfinite patch
with holes

Fig. 5. Sabin's parametric domain.

surface satisfies the given boundary condition. Therefore, the earlier method
must be revised in order to create a surface freely from arbitrary edges. It
seems that the boundary in the 2D domain has to be similar to the 3D bound-
ary in the 3D space. From such a point of view, Sabin proposed a surface patch
using the definition space shown in Fig. 5. He also proposed a surface using
dynamics from the same point of view with some restrictions from the same
idea [5].

§4. Surface Generation from Boundary Edges by Reverse Mapping

In order to create a surface patch with concave edges and holes, the interpola-
tion method has to be able to interpolate boundary edges on a plane at least
without overlaps and protrusions. A transfinite surface blends sample points
on the given boundary edges in an appropriate ratio. Therefore, the point to
be interpolated exists in the convex hull of the sample points. Thus, it can be
said that it is essentially difficult for a transfinite surface to generate a surface
with a concave edge. Fig. 6a shows the boundary edges with a concave part on
a plane in 3D space. It is desirable that point P is given as the point obtained
by blending the sample points A1-A5 on each boundary edge. The point is in
the convex hull of points A1-A5 because the blending functions have a value
between 0 and 1.

Now consider the domain of Fig. 6b and Fig. 6c in UV-space. In case of
Fig. 6b, the corresponding sample points bl-b5 are obtained for a point p(u, v)
and the sample points in 3D space become the points B1-B5 shown in Fig. 6d.
It is thus possible that the blended point Q will be placed outside the boundary
edges. In the case of Fig. 6c, sample points cl-c5 for point p will be obtained,
and the corresponding points will be points C1-C5. Points C1 and C5 are
affected strongly near the boundary, and point Q becomes an interpolated
point and gives the good interpolated result shown in Fig. 6e. From the reasons
outlined above, it can be said that the sample points are obtained near a
point in the domain by using the definition boundary which resembles the
given boundary edge. Since the sample points in 3D space for the point are
given in appropriate ratios, a better interpolation can be realized compared
with the conventional method in which a domain is a regular polygon. It can
be also said that cross-boundary derivatives are helpful in avoiding a web in
the concave part. The second term of (5) gives an effect of cross-tangential
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Fig. 6. Difference in sample points according to domain definition.

vectors to the surface. This term makes the surface point move according to
the product of the distance parameter and the cross-boundary vector from the
boundary.

4.1 Reverse mapping algorithm

In the previous section, it was stated that the boundary in a 2D definition
space has to be similar to the shape of the 3D boundary edges. The following
should be observed in constructing the domain boundary:

(1) The scale of 3D edges should reflect one of the domain edges.

(2) The topology of 3D edges should be the same as one of the domain edges.

(3) The angle of adjacent edges should reflect one of the domain edges.

Let us now consider a reverse mapping which satisfies these properties.
Imagine a rubber surface spread over wires. By leaving it free, the wires
will be straight. It would be ideal to use something like these wires as a
2D domain boundary. However this ideal mapping would be disadvantageous
when considering the computational cost, so we selected a simple method
of reverse mapping. Fig. 7 shows the algorithm. Each edge is connected at
point Pk. Let the foot from the point to a plane be point Qk. The plane
can be obtained simply by solving the equation EN 1 (Pk - Pk)2 so that it
is minimized using the least square method. After obtaining the foot Qk of
the point to the plane, define the polygon which is constructed by Qk as a 2D
domain boundary.

4.2 Implementation method

In Section 2, the distance parameters and boundary parameters were defined
in the normalized regular polygon of Fig. 2. The revised version of surface
generation uses the same parameters, but uses non-normalized and irregular
polygons with convex and concave parts. In order to define the distance
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parameters for such polygons, we applied the previous calculation method used
for the inner boundary to both the outer boundary and the inner boundaries.
The boundary parameters are obtained by (3). Also the blending functions
have to be revised because (4) is defined for the domain of a regular polygon.
Next (7) is substituted for (5) in order to represent the concave figures shown
in the next section:

- 1/d•'m(6

(u,muV) - HM (6)

p=O q=1

H Mp

S(u, v) = E 4 Op,q(U, v)(Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q)). (7)
p=O q=1

4.3 Theorems

Some characteristics of the blending function and the surface patch defined
in the previous section are now discussed. The following theorems can be
obtained from (6) and (7). Select a pair of independent variables bij and dij.

Theorem 1. lim 4i,j(u,v) = 1, lim CJ (u,v) = 0 when (l,m) :A (i,j).
dj--.- d,m--O

Theorem 2. Oa.im(U,v) = 0 and 19t,m(U,v) = 0.abi~j adij

Theorem 3. lim S(u,v) = Bi~j(bij), and
dlij -- 0

lim OS(u,v) OBij(bij) lim aS(u,v)_ lim Divj(bi)j,dij)
dij-- ibi~j Obij dlij-- =dij dim '0

Proof:

lim aS(u, v) = lim H -P'q (Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q))+
dij--0 abi~j di,j"-Op Y'E =

p-O q=1

SDOB(bp,q) + Dpq(bpq, dpq) + dpq aD(bp,q,dpq)
P~t• + Dp,q _p__dp_)_+_p____'_

abijB~b abj)b

1im 4j( aB(bi j) +di J D ( -i+ diOD(bij, dij) ) _B(b,)
=dlj----oli abij( O b• i~~ij~jij , abij abi~j

H Mp

lim s(uv) = lim H MZ[P (Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q))+dlij--0 adi~j dij"-•Oz-o 1 d= E~ [ Wij

pq OB(bp q) + Od, Dpq pD(bp,q, dp,q)

_____ 9d9Ddz,7
a.B(bi) OD(bij, dj,

--lim 4),j( J+ D + OdijdI"J)) = D. (bij, dij).
iZ
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Fig. 7. Inverse mapping from 3D Fig. 8. Cross-boundary derivative.
space into 2D domain.

§5. Boundary Condition and Surface Connection

5.1 Setting boundary conditions

A Coons patch must satisfy a compatibility condition. A Coons patch, which
is constructed u~ing a two surface patch in principle, does not guarantee the
boundary condition without a compatibility condition. Gregory used a ra-
tional blending method, and invented a method of setting cross boundary
derivatives freely so as to remove the inconvenience. A Gregory patch needs
a compatibility condition for a positional boundary, and the twist vectors are
discontinuous at the corners. In Little's patch the boundary conditions can
be freely set for both position and tangent vector. The proposed surface does
not cause the problems of the so-called compatibility condition. However, it
is desirable that the tangent vector and the twist vector are continuous at the
corners. Here, the method of setting cross-boundary derivatives at the cor-
ners is introduced. As shown in Fig. 8, two normal unit vectors no, n1 are first
calculated from the boundary derivatives io,jo, il, and j1 , Here, the normal
vector at a concave corner should be reversed. Define the two vectors c0 , cl
obtained at the tips of the edge as c0 = j0 x no, cl = J, x nl. The vectors
n(t), c(t) are from interpolating no, n, and co, cl respectively. Thus the cross
boundary derivatives D(t) are given as D(t) = n(t) x c(t).

In order to satisfy the compatibility condition for a tangent vector in a
corner, the magnitude of a cross boundary vector has to been properly given.
Since the boundary parameter bij for the edge(i, j) is defined as being between
0 and 1, the following reference has to be applied:

bi-11 ' Obi~~
_d IIi_ _ = 1- 1 di j-___ ,__ II 1 di__0 j =00 (8)

lj 5.J0 d bd~j=O i id j= dij+2  b h =,1

5.2 Boundary condition at concave corners and holes

A special transaction must be done in the cases of concave corners and holes
so that the tangent vectors coincide with each other. As shown in Fig. 9, an
edge is connected to the adjacent edges at concave and concave corners. Also
an edge is connected to the adjacent edges at convex and concave corners in
Fig. 10. For these cases, the cross boundary derivative has to be given as in
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Fig. 9. Cross-boundary derivative Fig. 10. Cross-boundary derivative
in the concave-concave case. in the convex-concave case.

these figures. Therefore, the derivative is given as a rational function. Giving
the coefficients of (8) as kO and k1 respectively, the tip vectors co, cl are given
by (9). c00 and cll are auxiliary vectors given to form the cross boundary
vector. This is the reason why (5) is replaced with (7). For a surface patch
with an isolated edge, the cross-boundary derivative can be set freely along
the edge, because there is no adjacent surface around the isolated edge. Such
a boundary edge is intended partially to trim a base patch:

_ bcoo + dkoco (1 - b)c11 + dkicl

b + dko ' (1-b)+dk1  (9)

§6. Example of Surface Generation

Figures 11 to 14 show examples of surface generation. Reverse mapping al-
gorithms are applied to all of the surface generation. Compared with the old
algorithm, it is unnecessary to modify the inner boundaries manually in a
domain space. Fig. 11 shows an example with multiple holes. Fig. 12 shows
an example with a ridge. The surface in Fig. 13 differs from the one in Fig. 14
in the shape of the hole, but both surfaces are generated in a desirable way.

§7. Conclusions

In this paper, a method of generating an N-sided patch with holes has been re-
viewed, and a revised method has been introduced. The following conclusions
were obtained:
(1) The previous method has problems in generating a surface patch from

boundary edges with concave parts and holes, because a transfinite sur-
face essentially interpolates the sample points of given boundary edges.

(2) However, by using a reverse mapping from 3D space to 2D space, the
shape of boundary edges becomes similar to the one in the 2D-space.
This method relieves the above problems, and a surface can span arbitrary
edges with holes and concave parts.

(3) In addition, this method can also represent isolated edges like ridges and
valleys.

Acknowledgment. The author would like to thank Dr. M. A. Sabin of
DAMPT, the University of Cambridge for his useful suggestions.
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Fig. 11. Surface generation with Fig. 12. Surface generation with a
two holes and a concave edge. ridge.

Fig. 13. Surface generation with Fig. 14. The surface after the hole
concave parts and a hole. is rotated.
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